Sparse-TDA: Sparse Realization of Topological Data Analysis for Multi-Way Classification

نویسندگان

  • Wei Guo
  • Krithika Manohar
  • Steven L. Brunton
  • Ashis Gopal Banerjee
چکیده

Topological data analysis (TDA) has emerged as one of the most promising techniques to reconstruct the unknown shapes of high-dimensional spaces from observed data samples. TDA, thus, yields key shape descriptors in the form of persistent topological features that can be used for any supervised or unsupervised learning task, including multi-way classification. Sparse sampling, on the other hand, provides a highly efficient technique to reconstruct signals in the spatial-temporal domain from just a few carefully-chosen samples. Here, we present a new method, referred to as the Sparse-TDA algorithm, that combines favorable aspects of the two techniques. This combination is realized by selecting an optimal set of sparse pixel samples from the persistent features generated by a vector-based TDA algorithm. These sparse samples are selected from a low-rank matrix representation of persistent features using QR pivoting. We show that the Sparse-TDA method demonstrates promising performance on three benchmark problems related to human posture recognition and image texture classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1701.03212  شماره 

صفحات  -

تاریخ انتشار 2017